Network

We, SAMSON Co., Ltd., have been engaged in the manufacture and sales of various Boilers and Food Processing Equipment since our foundation in 1945, and have been enjoying a good reputation from customers in various industrial fields of Japan.

In overseas markets, we have devoted ourselves to exporting our products into mainly Asian countries for a long period and have delivered them to many customers.

After delivery, our authorized distributors in the respective countries have taken care of maintenance services on our equipment through the cooperation from customers.

We are supporting our distributors for the improvement of maintenance technology and we hope our customer can operate our products safely without any trouble.

SAMSON CO. LTD.

Tokyo Building(International Division)

ADDRESS	1-4-1 Omori-honcho, Ota-ku, Tokyo 143-0011 Japan					
TEL	+81-3-6423-1171					
FAX	+81-3-3761-0342					
E-MAIL	overseas@samson.co.jp					
WEB SITE	https://www.samson.co.jp/en/					

SAMSOLUTION INTERNATIONAL CO., LTD.

ADDRESS	7F-8, NO.12, LN.609, SEC.5, CHONGXIN RD., SANCHONG DIST., NEW TAIPEI CITY 24159, TAIWAN(R.O.C.)
TEL	+886-2-2278-3636
F A X	+886-2-2278-3535
WEB SITE	https://www.samson.co.jp/tw/

Water Treatment INEUR

SAMSOLUTION WATER TREATMENT SYSTEM
For a sustainable future of energy and food

Made in Japan since 1945

Good water is the basis for all activities

Proper Water Treatment is Essential for Boilers

Boilers are evolving day by day. Even if a boiler has high performance, you cannot operate it Especially, water treatment equipment is very important to operate the boiler for a long time.

efficiently without daily maintenance and inspection.

Functions of Water Softener

City water and well water contain hardness elements such as calcium and magnesium (called hard water). If you continue to use such water without any treatment, it may cause the equipment to reduce its efficiency, service life or product quality.

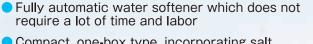
Water softener will eliminate hardness elements in the water by passing them through Ion Exchange Resin and change hard water into soft water. As a result, you can prevent troubles as mentioned above.

Meanwhile, you can use this Ion Exchange Resin repeatedly for a certain period by regenerating it with salt (NaCl)

Our multi-purpose boiler chemicals have a function to prevent scale sticking and corrosion, adjust pH, and disperse sludge. All materials used in these products comply with FDA standards and can be used safely in food processing factories.

For injection of boiler chemicals, use of our proprietary injection equipment is recommended.

Chemical **Injection Pump**



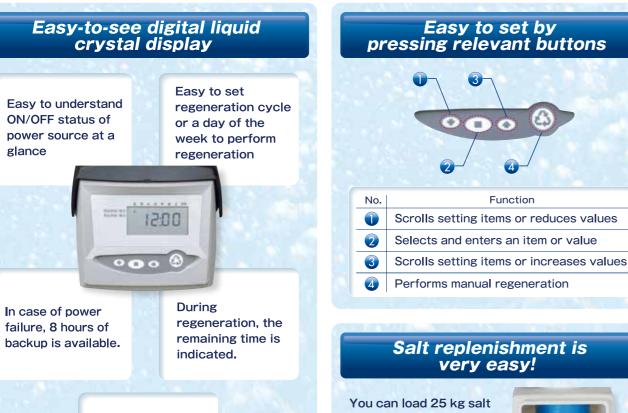
Brainage riese	11011		
Overflow Hose	mm		
Packaging Weight	kg	16	25
Operating Weight	kg	47	78
I. The quality of raw water should Turbidity Less than 2 In Chromaticity Less than 5 M Not meeting the above conditio performance degradation.	on Less than 0 langanese Less than 0	.3 mg/L .05 mg/L	2. The mo 3. Weight 4. Max. W 5. Drain V 6. Salt Co

15

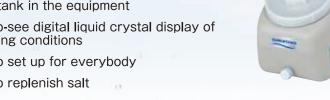
Manual regeneration

can be operated by

pressing one button.

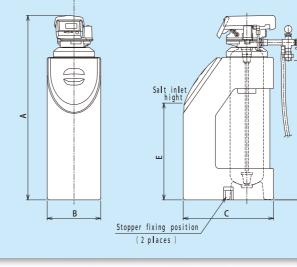

SSType

- Compact, one-box type, incorporating salt water tank in the equipment
- Easy-to-see digital liquid crystal display of operating conditions
- Easy to set up for everybody


SAMSOFTENER

Longtime seller over a quarter century

Easy to replenish salt



at a time from the large inlet directly into the salt water tank.

Dimensions

	Dimensions T	able
		Α
(Î	SS-1D /SS-1DE	648
7	SS-2D /SS-2DE	1,000
	SS-3D /SS-3DE	1,299
	SS-4D /SS-4DE	1,250
	SS-5D /SS-5DE	1,301
/	SS-6D /SS-6DE	1,403

Unit

_

l

mੈ∕h

g/cycle

m³/cycle

kg

MPa

°C

W

V

А

А

mm

SS-1D

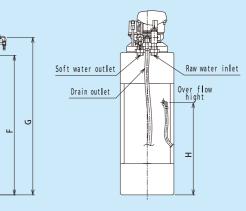
SS-1DE

6

0.36

270

2.7


97

89

1.2

24

								(mm)
	В	С	D	E	F	G	Н	
	230	440	481	400	417	502	380	615
)	290	490	500	525	757	854	500	650
)	290	490	500	827	1,056	1,153	802	650
)	350	630	630	770	1,007	1,104	736	784
1	350	630	630	770	1,058	1,155	736	784
3	400	710	710	824	1,144	1,257	790	880

This drawing shows SS-2D. Shapes vary depending on models and specifications.

	SS-2D SS-2DE	SS-3D SS-3DE	SS-4D SS-4DE	SS-5D SS-5DE	SS-6D SS-6DE
	Strongly acid	lic cation exchan	ge resin		
	12	20	30	40	54
	0.72	1.2	1.8	2.5	3.0
	535	895	1,340	1,785	2,410
	5.4	9.0	13.4	17.9	24.1
	115	91	105	94	110
	160	255	296	388	590
	1.8	2.6	4.1	5.2	7.0
	40	43	70	70 82	
	0.15~0.40			0.20~0.40	
	Water tempe	erature: 4 to 38,	Room temperate	ure : 1 to 49	
	1 to	7 times/week o	r once/1 to 14 c	lays	
(Conforms to the	signal (voltage of	100 VAC) input	from the outside	e
	0.3 (4.0	for only two min	utes during reger	neration)	
		100 AC (50/60	Hz in common)*		
		20 × 10			25 × 15
		2	20		25
		φ16× φ20			φ21 × φ27
		φ12 ×	¢15		
	25	36	48	58	74
	78	107	165	195	273

The model number of impulse timer specification is suffixed with E.
 Weight of Hardness Eliminated is calculated in terms of CaCO₃.
 Max. Water Supply Volume is a value where Total Hardness is 100 mg/L.
 Drain Water Volume is a value where Raw Water Pressure is 0.40 MPa.

6. Salt Consumption varies depending on the storage amount and dissolution time of salt.
 100-240V can be available by transformer.

Medium Class to meet actual

water consumption

We recommend you to operate SAMSON water softener in order to produce the following water.

Boiler Water

Prevents a drop in heat efficiency due to scale, and saves fuels and chemicals used. In addition, the need for washing water tube is eliminated.

Feed Water for **Electrolytic Water** Generator

Prevents scale from sticking to electrodes and extends the life of the equipment.

Cleaning Water

aves the amount of detergent eeps clothes beautiful, nd improves whiteness of

Dyeing Water Makes it easy to dye and wash. Moreover, dyed colors become more brilliant.

OPTION Common in SS, SSM, and SSL Series

Water Softener Regeneration Signal Output

Water softener outputs an external signal at the time of regeneration. Both voltage contact and non-voltage contact are available (except for SS-03D. DE).

Outdoor Specification

Select this specification in the case of outdoor installation (except for SS-03D, DE).

Fully Automatic System

SSM_{Type}

You can perform automatic regeneration for 5 processes by fully automatic timer. You can also perform regeneration as needed.

177.

Reliable Salt

6 varieties of large capacity models

Fully Automatic System

Reliable Salt Water Adjusting Equipment

SAMSON's proprietary structure always supplies you with higher concentration salt water.

performance Excellent water distribution to Ion Exchange Resin makes it

possible to prevent channeling.

Gathering and

distributing water

pipe of high

You can perform automatic

by fully automatic timer.

regeneration as needed.

You can also perform

regeneration for 5 processes

5

Cooling Water for Garbage Incinerator

Reduces the number of cleaning times of water pipe, and extends the life of the equipment.

Water for Hair and Beauty Saloon

Helps keep hands smooth and saves the amount of shampoo used.

Cooling Water for Air Conditioner

Prevents scale from sticking to the cooling tower, and reduces chemicals used and blow volume.

Water for Public Bath

Reduces the frequency of piping replacement.

Taking a soft water bath is healthy for your skin, and the soft water can create more foam.

(applicable model: SS-D, SSM-D, and SSL-D)

Select this specification in the case of operating impulse timer based water softener continuously for 24 hours.

This controls a motor valve to prevent hard water from entering the feed water tank.

We have "S system" suitable for one unit of water softener and "W system" for its two units.

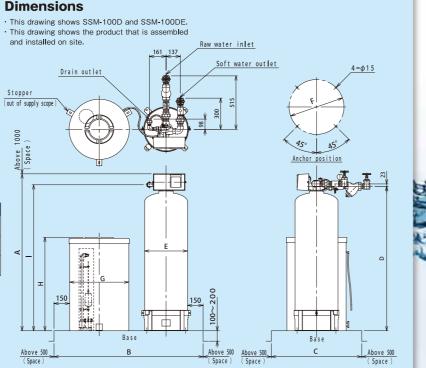
Fixed Volume Regeneration Specification

(applicable model: SS-DE, SSM-DE, and SSL-DE)

This specification model includes a control panel, through which automatic regeneration takes place at the time of reaching the set volume.

This is applicable to DE type water softener which regenerates due to the external signal.

We have "EFR-S Series" suitable for one unit of water softener and "EFR-W Series" for its two units.

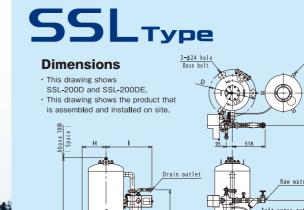


Dimensions

SSM_{Type}

Dimensions Table

	А	В	С	D	E	F	G	Н	I
SSM-70D SSM-70DE	1,563	1,225	740	1,442	φ336	φ446	φ440	755	1,457
SSM-100D SSM-100DE	1,511	1,435	870	1,391	φ413	φ528	φ570	900	1,405
SSM-150D SSM-150DE	1,604	1,575	870	1,484	φ555	φ652	φ570	900	1,498



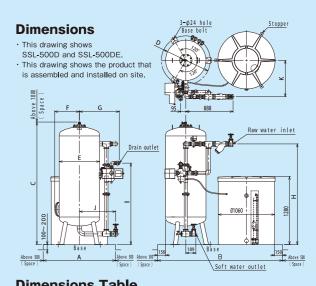
Specification Table

	ltem	Unit	SSM-70D SSM-70DE	SSM-100D SSM-100DE	SSM-150D SSM-150DE				
	Resin	_	Str	ongly acidic cation exchange re	sin				
Re	sin Quantity	l	74	105	157				
Maxim	um Flow Volume	m³/h	5.6	7.0	9.0				
Removal	Hardness Weight	g/cycle	3,120	4,460	6,690				
Maximum V	Vater Sampling Rate	m³/cycle	31	44.5	66.5				
Rege	eneration Time	min/regeneration	88	104	134				
Di	splacement	ℓ/regeneration	800	1,200	1,800				
Salt	Consumption	kg/regeneration	8.4	12	18				
Maxim	um Salt Storage	kg	47	47 136					
Normal H	Hydraulic Pressure	MPa		0.20~0.40					
Water/R	oom Temperature	°C	Water temperature : 4 to 40 , Room temperature : 1 to 49						
Regeneration	Time Regeneration		1 to	7 times/week or once/1 to 14 of	days				
Period	Signal Input Regeneration	0,20 0,10							
Powe	er Consumption	VA	3 (200 f	or only one minutes during rege	neration)				
Po	ower Supply	V		00 AC (50/60 Hz in common)	*				
Connecti	ng Piping Diameter	А		40					
Drain	Piping Diameter	А		20					
Ov	verflow Hose	_		ϕ 12 × ϕ 15					
Pro	oduct Weight	kg	115	150	220				
Ope	rating Weight	kg	290	475	645				
Capacity	of Salt Water Tank	l	100	200	200				

1. The quality of raw water should be in the following conditions: TurbidityLess than 2IronLess than 0.3 mg/LChromaticityLess than 5ManganeseLess than 0.05 mg/L Not meeting the above conditions may cause clogging or performance degradation. 2. The model number of impulse timer specification is suffixed with E.

Weight of Hardness Eliminated is calculated in terms of CaCO₃.
 Max. Water Supply Volume is a value where Total Hardness is 100 mg/L.
 Drain Water Volume is a value where Raw Water Pressure is 0.40 MPa.
 Salt Consumption varies depending on the storage amount and dissolution time of salt.
 Gross Weight includes the weight of salt water tank and its accessories.
 100-240V can be available by transformer.

Above 500		,	Above (Space		<u>Above 50</u> (Space)			792	Soft wa	iter out	er inlet	ve
Dimen	51011		-	C								
	А	В	С	D	E	F	G	Н		J	K	
SSI -200D	050	4 070					000	077		1 100	1050	ί.


SSL-200D SSL-200DE	950	1,670	1,936	φ740	φ556	φ570	900	377	726	1,422	1,250	510
SSL-300D SSL-300DE	1,030	1,910	2,052	φ840	φ658	φ710	890	421	711	1,531	1,343	561
SSL-400D SSL-400DE	1,200	2,200	2,065	φ940	φ758	φ900	890	465	761	1,524	1,336	611

Specification Table

Specific	Specification Table										
	Item	Unit	SSL-200D SSL-200DE	SSL-300D SSL-300DE	SSL-400D SSL-400DE	SSL-500D SSL-500DE	SSL-600D SSL-600DE	SSL-800D SSL-800DE			
	Resin	_		Str	ongly acidic cat	ion exchange re	sin				
Res	sin Quantity	l	200	300	400	500	600	800			
Maximu	m Flow Volume	m³/h	16	20	22	26	30	32			
Removal	Hardness Weight	g/cycle	8,920	13,380	17,850	22,310	26,770	35,700			
Maximum W	Vater Sampling Rate	m³/cycle	89	133.5	178.5	223	267.5	357			
Rege	neration Time	min/regeneration	114	134	168	171	205	252			
Displacement		ℓ/regeneration	2,400	4,000	5,400	6,300	8,000	10,300			
Salt Consumption		kg/regeneration	24	36	48	60	72	96			
Maximu	um Salt Storage	kg	90	130	260	590	540	450			
Normal H	lydraulic Pressure	MPa			0.20	~0.40					
Water/Re	oom Temperature	°C	Water temperature : 4 to 40 , Room temperature : 1 to 49								
Regeneration	Time Regeneration		1 to 7 times/week or once/1 to 14 days								
Period	Signal Input Regeneration		С	onforms to the s	ignal (voltage o	f 100 VAC) inpu	It from the outsid	le			
Power	r Consumption	VA	3 (200 for only	one minutes durir	ng regeneration)	3 (Maximu	m 210 during re	generation)			
Po	wer Supply	V			AC100 (50/60	Hz in common)*	:				
Connectin	ng Piping Diameter	А		50			65				
Drain F	Piping Diameter	А	25			40					
Over	flow Diameter	А			2	0					
Pro	duct Weight	kg	430	580	780	890	1,050	1,340			
Oper	rating Weight	kg	940	1,350	1,920	2,490	2,820	3,270			
Capacity of	of Salt Water Tank	l	200	300	500	1,000	1,000	1,000			

1. The quality of raw water should be in the following conditions: Turbidity Less than 2 Iron Less than 0.3 mg/L Chromaticity Less than 5 Manganese Less than 0.05 mg/L Not meeting the above conditions may cause clogging or performance degradation. 2. The model number of impulse timer specification is suffixed with E. Weight of Hardness Eliminated is calculated in terms of CaCO₃.
 Max. Water Supply Volume is a value where Total Hardness is 100 mg/L.
 Drain Water Volume is a value where Raw Water Pressure is 0.40 MPa.
 Salt Consumption varies depending on the storage amount and dissolution time of salt.
 Gross Weight includes the weight of salt water tank and its accessories.
 100-240V can be available by transformer.

7

Dimens														
		В	С	D	E	F	G	Н			K			
SSL-500D SSL-500DE	1,360	2,350	2,304	φ920	φ758	465	751	1,892	1,531	682	685			
SSL-600D SSL-600DE	1,360	2,450	2,344	φ1,000	φ858	508	801	1,932	1,571	732	735			
SSL-800D SSL-800DE	1,360	2,550	2,384	φ1,100	φ958	593	851	1,971	1,610	782	785			

80.00

Chemical Injection Equipment

Keeps boiler in good condition for a longer period by Chemical Injection

This equipment is intended to inject boiler chemicals essential to maintain the boiler in good condition. The operation becomes very easy by undiluted solution injection system. And the dilution is not difficult either.

1041020403

Chemical Injection Pump CP-X series

Chemical Injection Pump with basic niection function **CP-W** series

4 ID × 6 OD (PA hose)

4 ID × 9 OD (PVC hose)

4 ID × 6 OD (PVC hose)

AC 100-240V Single-phase

50/60Hz

CP-W-30

30 mL/min

1.0 MPa

Solenoid

2.0A

200VA

15W

 $\phi 5 - \phi 10$

Cabtyre Cable 2 m

CP-X-31D

28 mL/min

1.5 MPa

Electromagnetic

2.2A

220VA

16W 75°C HVCTF

3×0.75mm⁴

Length 2 m

Model	Applicable Boiler	lodel	Pump	o Model
CP-W-30-			Max. (Capacity
VTCET-BW	EB-160 — 500(P)	N	Max. Disch	arge Pressure
	TU-100-500(P)R			Discharge Side
CP-X-31D- VTCET-BW	RBO-750 - 2500 (F		Connection Size	Suction Side
	RB0-750 — 2500 (F	P)LN		Air Release
Accessories			Drive	System
①Nylon Hose (4 ID × 6 Ol	D)	2.5 m	Powe	r Supply
②PVC Braided Hose (4 ID	× 9 OD)	0.5 m	Frec	quency
③Air-Releasing PVC Hose	e (4 ID × 6 OD)	1 m	Peak	Current
④Special Straight Check Valve	e (set pressure of 0.12 MPa)	1 (SC3-4E)	Peak Power	Consumption
$\textcircled{5}$ Foot Valve (for 4 ID \times 9 OD, Valve	Seat is made of PTFE) * Only for CP-W	1 (FV-4ET)	Average Pow	er Consumption
[®] Pump-Mounting Bolt and	d Nut (M5×30)	2 sets		
⑦Operation Manual		1	C	able
In the case of installing a unit	(pump+tank), 2 and 6 are r	ot provided.		

Cable

Multi-Functional Chemicals for protection against corrosion and scale sticking

Maintains Boiler Water in good condition by pH control, scale dispersion, etc.

- Adjust pH of the boiler water to a proper value, and form the corrosion protective film on the inner surface of the boiler.
- Organic acid, organic acid salt and alkaline agent included in boiler chemicals act to disperse hardness elements leaked from the water softener as well as ion oxide.
- Transforming silica which cannot be treated by the water softener into water-soluble silicate sodium prevents scale from sticking to the inside of the boiler.

Multi-Purpose Boiler Chemicals

Туре	SAMCLEAN S-125
Capacity	18 kg
Package	Polyethylene Container

Water Analysis Services

Standard Value of Feed Water for Samson Boiler

Division	Control Item	Unit	Standard Value
	pH (at 25℃)		5.8-9.0
	Hardness	mgCaCO ₃ /ℓ	Less than 1
	Oils and Fats	mg∕ℓ	Keep at low level
	Dissolved Oxygen	mgO/ <i>l</i>	Keep at low level
eed Water	Iron	mgFe/l	Less than 0.3
	Electric Conductivity	mS/m	Less than 35
	Acid Consumption (pH4.8)	mgCaCO ₃ /ℓ	Less than 80
	Chloride Ion	mgCl⁻/ℓ	Less than 50
	Sulfate Ion	mgSO₄²⁻/ℓ	Less than 50
	Silica	mgSiO ₂ /ℓ	Less than 50
	pH (at 25°C)		11.0-11.8*1
	Acid Consumption (pH4.8)	mgCaCO ₃ /ℓ	100-800
	Acid Consumption (pH8.3)	mgCaCO ₃ /ℓ	80-600*2
	Electric Conductivity	mS/m	Less than 400
Boiler Water	Chloride Ion	mgCl⁻/ℓ	Less than 400 *3
	Sulfate Ion	mgSO₄ ²⁻/ℓ	Less than 400 *3
	Active Chemical Ingredients		More than 10*4
	Phosphate Ion	mgPO₄ ^{3−} /ℓ	More than 20*5
	Silica	mgSiO₂/ℓ	Less than 400 *6

*1 Keep the pH of the boiler water at around the upper limit of the standard value range. *4 Applicable to the case where phosphate is not included. This prevents silica scale and corrosion from occurring in the boiler in standby condition. *2 Maintain more than 1.5 times of silica concentration. *5 Applicable to the case of using treatment chemicals including phosphate in the boiler. *3 Under the condition of CI⁻ + SO₄ $^{2-} \leq$ 700 mg/ ℓ

In order to operate the boiler at high efficiency for a long time, it is important and essential to analyze water quality and understand it.

With a computer-based data management system, we monitor trends in water quality and submit an analysis report to our customers.

Sample 1 Sample 2 Sengle 30 138000588 Type of Water 100000588 Sengle 30 100000588 Sengle 70 100000588 Type of Water 100000588 Sengle 70 500000 Teme 10000 1 60000 2 PH 6500 2 And Consumption/pH 30 040000/r, 1 3 4040000/r, 10000 /r, 1 4 4 Hortschard 2000 /r, 1 4 5 Hortschard 2000 /r, 1 4 6 MatcOnter 2000 /r, 1 4 7 5 MatcOnter 2000 /r, 1 8 Hortschard 2000 /r, 1 4 9 MatcOnter 2000 /r, 1 4 1 5 Hortschard 2000 /r, 1 1 1 4	TO SAMSON CO,LTD 3-4-15, YAHATA-OHO, KANONJI-OTTY, KAGAWA JAPAN		NO. SAM 13-7			
Sample No. 13800088 Taylor Water 5800-5000001 Strait No. 5800-5000001 Strait No. 5800-5000001 Strait No. 5800-5000001 Dear Strait No. 5800-5000001 Dear Strait No. 5800-5000001 Dear Strait No. 5800-50000000 Dear Strait No. 5800-500000000 Dear Strait No. 5800-500000000 Add Consumption/pHB. mpGACO/L. 11 Add Consumption/pHB. mpGACO/L. 11 Add Consumption/pHB. mpGACO/L. 11 Add Consumption/pHB. mpGACO/L. 11 Deards Inc. mpGACO/L. 10 Deards Inc. mpGACO/L.	ATT	TM : MR.			JULY, 28 2013	
Type of Wear Figure 0 Standard Value Source Sensitive Value Standard Value Data Sensitive Value Standard Value Data 1000 1000 1 Decret Conductive Main Standard Value 1 Decret Conductive 6.5 m Standard Value 1 Decret Conductive 6.5 m Standard Value 1 Decret Conductive 6.5 m Standard Value 2 Asid Conserverptice(HB) mc(ACO), L - 5.8 ± 0 3 Maid Conserverptice(HB) mc(ACO), L - East than 32 4.6 Add Conserverptice(HB) mc(ACO), L 4.8 test than 32 Test than 32 3 Indicative mc(ACO), L 4.8 test than 32 Test than 32 2 Standard Acol Conserverptice(HB) mc(ACO), L 4.8 test than 32 Test than 32 3 Defrom family mc(ACO), L 8.8 test than 1 Test than 32 3 Defrom family C 8.8 test than 1 Test than 32 3				Sample 1	Sample 2	
Bolar RBD-2000CHB Bandword Val Serial Biolon Serial Sector Serial Sector Sector Sector Data 2013/17.15 Distance Sector Sector 1 [Encore Towe mS/m 6.5 Less than 35 2 [Mid Conductivity mS/m 6.5 Less than 35 3 Act Concurrent/order Mid migG/GC/L - - 4 Act Concurrent/order Mid migG/GC/L 14 Less than 16 3 Mact Concurrent/order Mid migG/GC/L 14 Less than 16 3 Extraction migG/GC/L 14 Less than 16 Less than 16 3 Extraction migG/GC/L 14 Less than 16 Less than 16 3 Extraction migG/GC/L 14 Less than 16 Less than 16 3 Extraction migG/GC/L 16 Less than 16 Less than 16 3 Extraction migG/GC/L 16 Less than 16 Less than 16 3 Extraction migG/GC/L 16 Less than 16 Less than 16 3 Extraction migG/GC/L 16 Less than 16 Less than 16 4 Extrantion migG/GC/L				1380103688		1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
Specific Proton Specific Value Data 10000 1000 100000 0.000 0.000 12 0.0000 0.000 2 0.0000 0.000 3 0.0000 0.0000 4 0.0000 0.0000 3 0.0000 0.0000 4 0.0000 0.0000 5 test than 80 0.00000 6 0.0000 0.0000 6 0.0000 0.00000 0 0.0000 0.0000 0.0000 0 0 0.0000 0.0000	-			RBO-2000PGN		Standard Valu
Date 2012/17.15 [Betrice Conductivity m5/m 6.5 less than 35 2 bH me_Grad_Columbia m6_Grad_Columbia S1.4:5 S1.4:5 3 bott Consequences me_Grad_Columbia me_Grad_Columbia Head Consequences Head Columbia Head C	-		n	Sampling Valve		1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $				2013/7/15		1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Time		10:00		ļ
3 bid Consequence(bit) m(2ACO), L - - 4 bid Consequence(bit) m(2ACO), L 14 less than 80 5 forstress m(2ACO), L less than 10 less than 10 5 forstress m(2ACO), L less than 10 less than 10 6 bidles, food loss m(2ACO), L less than 10 less than 50 6 bidles, food loss m(2ACO), L less than 50 less than 50 6 bidles, food loss m(2ACO), L less than 10 less than 50 9 loss m(2ACO), L less than 10 less than 50 9 loss m(2ACO), L 0 less than 50 10 less than 50 less than 50	1	Electric Conductivity	mS/m	6.5		less than 35
4 (add concentration) 4.6 m(adCO), 1. 14 Vers than 8.0 § (Furdenss m(adCO), 1. (best than 1 Vers than 5.0 (furdenss m(adCO), 1. (best than 5.0 (furdenss m(adCO	ź	pН		7.6		5.8-9.0
S Hydrames Imp(20, γL) (est bars1 less than 1 less than 2 6 Diturde lon mp(20, γL) (S diture Acid lon mp(20, γL) (est bars2 8 less than 3 8 Billica mp(20, γL) (est bars2 8 less than 5 less than 5 9 Inon mp(20, γL) (est bars2 8 less than 5 less than 5 9 Inon mp(est µL) (est bars2 0.13 less than 0.2 less than 0.2 1 less than 0.2 less than 0.2 less than 0.2	3	Acid Consumption(pH8.3)	mgCaCO ₃ /L	-		
6 District for mgC/L 9 less than 50 7 Subtrick Acid and mgSO ₂ /L less than 50 less than 50 8 Bitca mgSO ₂ /L 8 less than 50 9 Inter Acid and mgSO ₂ /L 8 less than 50 10 mgSO ₂ /L 0.13 less than 02 10 1	4					
T. Suffurio Acid Ion mgSO_1 ^A /L less than 1 less than 50 8 Silica mgSO_1/L 8 iless than 50 9 Ion mgFer/L 0.13 less than 0.2 10 iless than 0.2	5		mgCaCO ₃ /L			
8 Silica mgSiQ:/L 8 less than 50 9 Bron mgFe/L 0.13 less than 0.2 11	6					
9 Iron mgFe/L 0.13 less than 0.3 10 11	7					
10	8					
11	9	Iron	mgFe/L	0.13		less than 0.3
	10		-			1
12						1
			1			l
NOTE * out of standard value	12					

Please consider the most suitable model based on analysis of raw water.

*6 Standard value of silica concentration in the case of using treatment chemicals in the boiler.